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1.Outline



2. (inSpaces,Gohomology
We returntofinite group gauge theory
and give

another perspective.
For

any topological group
to there isa

topological space (only definedup to
homotopy equivalence) denoted BG with
theproperty thatthere is a 41-1
correspondence:
homotopy classes S isomorphism classes 3E of maps (E) of principal G-bundles
f:M+ BG

P- M

One
way

toconstruct BGis tofind a

Space EG which is

(a) contractible
(b) admits a free G-action.

Then BG =EGG.



For example, for G = I we can take

EG= IRwith2 acting by translations,
So BG is

any topological space h.e.
to s? Butthis example isa bit

misleading. Consider G= 22. The
simplestmodel for EC is theunit sphere
in an O-dial Hilbertspace

and BRRRN*.

A systematic way
toproceed begins

by identifying a group witha category
Go =SC =Hom/,) =G

The composition of arrows in C, is

definedby group multiplication

-g,gig=g,gn



Now assume G is a finite group.

We constructa CW complex

O-skeleton = A

1- skeleton
=G

Nextthe aim is attach disks of higher
dimension so thatall the higher
homotopy groups vanish and , (BG) =G.
butij(B6) =0 jx1.

We view Ge as defining triangles
which we wish to fill in

arrow ·I
with reversed orientation⑨gree I is ⑧- a I

qu g
- 1

In equations, take the n-simplex
An= [[to ...,tn) (tix,o ti=1}



and consider the 1 space

Anxa"
We introduce maps

·6x6Gxx....
di) g., . . . ,gn) =(9) - - - 9r)

d'(9, - -
- gn) =(9,9293, - - - ,gr)

I

d(9, ---,9n) =(gy - - - - ,gr -1gn)
d"(g, --- 91) =(g,s - - -

- g, -1)

andoppositeface maps do:Antiet

B6-(x64)/d)-E,dig)



Given the existence ofBG we

can view finite 6 gauge theory
as a "nonlineara-model up

to homotopy"

z(Mn) = I to l
To (Map(MntB6)]

z(Nn-1) =Functions(o (Map(NeiB6)



3.Go Cology

The cohomology of BC defines the

group cohomology. Concretely:

CY0,5) =94:a- Al
Abelian

&:C"(G,A) -- C
"*

(G,A)

(8) (g, ...,grx) =b(gz, -- - gati)
- 4(9,92,931 - - - ,gn+1)
+4(91,9290,---,9n+)
I - - -

+(-1)
+

1G(g,, - - --,gn)
rise: (a) Check 8=0

(b) write out&p =0 for the firstfew cases

Ref:H(G,A) =Kerd/ind



4. Digression:Projectivity In QuantumMechanics

One of the mostimportant group
cohomologies in physics is H*(G, U(II),
which classifies iso. classes of
central extensions.

One of the foundations ofquantum mechanics
is the Born rule:

1. Physical statestare traceclass positive op's
on a C-Hilbert Spacewith trace trg)

= 1

2. Physical observablesare self-adjoint
operators on I:
The Born rule is a pairing of
states +observables to give a probability
distribution on A: For a measurable set

Eck P, a(E) =Trge(PalE)9)
where PCE) is the projection-valued

bmeasure associated to by the



spectral theorem. IfO has a

discrete spectrum of eigenvalues X:

RE) =2 P(b:)
D:EE

P(Xi) =Projector onto eigenspace for 1:

An amphism of a quantum system
is a bijectivemap ofstatestobservables

preservingthe Born role.

One can show itisdetermined by a

bijectivecorrespondence on pure states
preservingthe overlap function

a(P, P2) =Tr(P.Pe)=
for

pure states Pi=



The pure
states form aretire

Hilbert
space and the overlap function

isrelated to the Erbini-Study metric

on projective space:
0 (P, P2) =coSP)

so the automorphism group ofa

quantum system is the group of
isometries of complex projectivespace.
Wigner'sReorem relates this to

Canti-) linear operators on 11.

Let Art(t) =group of unitary and
anti-unitary op's on I.

·it:Art (Y) -> AvAQM)

g1> #g):P-gPg



Wigner'sTheorem asserts that it is

subjective and the kernel is the

grogs
UIII acting as scolors on 20.

1 -U(II - Art(e)= Aut(aM)-1

Now, ifwe have dynamics ↑eonly a subgroup of Aut(QM)
will commute withthe
flows on A, O. G

ByWigner's themen YgeG we can

pick aUCg) (Art(I) s.t.

x(V(g)((ga)) =i(V(9,92))
Butthis only allows us toconclude
thatU(gi)U(2) =((9,92) U(9,92)
for some function c:GxG -> U(I)



Now assume (for simplicity) that
the Wig) are D-linear for g=G.
Then (exercise!) ec EG, UIII)
The pullback group
E =UWXG with

group law

(E,gi) (Er,g2): =(Ziz(9,92), 9,92)
is linearly represented on I

T(E,g)) =z U(g).
Agood example is a spin/ Qbit
where the SOB) isometry of KP'
is represented onthe HilbertspaceD
by the centralextension

1 - 22-SU(2) -SO3)-1.



5. Dijkgraaf-Witten Theory

DW
gave a

"lattice
gauge theory model

oftopological finite G garge theory, and
an importantgeneralization thereof basedon

group cohomology.
Let us justdescribeitfor 2-dimensions,
and we justexplain how to compute the

partition function. The construction generalizes11

tofully extended" (see below) n-dimal
Theories.

Let Me be an oriented compactsurface

Close a triangulation on Me

Require that the gauge field be flat
So the plaquette Boltzmann weight
is only determined by two group
elements



29,92 was weightWCg,,gr)ED*
91

(some choices mustbe made for this

tobe unambiguous).

F(M2) = 3 -W(9,92)
maps:Edges ->G

Now demand invariance under triangulations
93 Is

signs,a signin e
=>

W(g,ge) is a group cocycle
Then

one checks, usingthe cocycle

identity, that we have invariance under
refinement:



egator-geta
which can be viewed as a kind

of"renormalization
group

fixed point
"

condition.

Fact:All triangulations can be obtained
by these two moves
So F(M2) is independentof triangulation.
More over F(M2) only depends on

The
group cohomology class determinedby

W(g,,92).



In n-dimensions me use a simplicial
decomposition and the Boltzmann weightsare
an n-cocycle on G valued in D*

In particular, in 3 dimensions

The theory is determined by an
elementof ((G, UII).
For a finite group one

has:

HY(6,v(1)) =HY(G,x)
So the n=3 case is justChern-SimousWitten

Theory for a finite group G.
Quite generally, for a compact group
6 The 3d CSW is completely
determined

by
a "level"

x =HY(G,2).



6. Hategories
Now we want tostart describing ended

TFT. The idea istotake localityto
its logical limit. We have the

gluingformula relating partitionfractions
topairings ofvectors in state spaces

F() = (r):), FAE)y
The question then naturallyarises whether
the

space ofspates associated to a
compactNow, wort boundary can likewise

be assembled from pieces

F(N-, =N)=



Away ofmotivating the higher
categories comes from consideringand

open/closed theory:

Doitisthe 1-morphism

2-morphism between
↓- morphisms"

Ahindway
of motivating these

ideas comes from thinkingofdefects
Within defects (Kapustin ICM 2010)

!for



Afurth
way comes

from thinking about
-

the proper categorical interpretation
of

The fundamentalgroup:
Let X be a topological space.
We form a toy whose objects

are the points of X. The morphisms
x, +Xe are paths in X 0.x,X2

Considered
up to homotopy with fixed

endpoints Hom(x, x2) =P(x,x2)/homotopy
Then it(X,x0) =Hom(x, x0) ==Aut(x).
This important) category is called
the fundamentalgroupoid <1X).

Butare could make a moreelaborate

objectifwe decline toconsider paths
only up to homotopy.



We could consider - 2(X)
Where I-maphisms between objects x,eXm
P(x, x) and "2-morphisms"areI

homotopies of paths.
And so

on, up to40(X).

Fifthway originates from Morse theory
Let us revisit the topology change
induced by a saddle:

⑧ &
⑳

-I I!
->
t, c [0,1]



&
W ⑳

!I
->
t, c [0,1]

The zero objectsare the orange points.
At time t2 =0 we have a bordism

from two points to two pointscolored
in green. It istheevolution alongs.
Recall thatthe bondism isa l-morphism
inthe category Bardo, 17 e

At time to -1 we have a bordism
between the same pairofobjects we
had at te =0, but the green bondism

is adifferent 1-marphism in Bordco, 17.
The saddle isa 2-morphism between these
two 1-morphisms.



In general if we thinkof categories
in terms ofdirected graphs when we add

2-maphisms we introduce a new kind of

arrow:

·.
I

These can be composed in several
different

ways

·
and there are

may may technicalities
(e.g. rigidityetc.) and many axioms
But (see references) one can

extend the idea of a category to
an n-category



In an n-category the Hom-spaces
between objects (a.k.a."O-morphisms")
are (n-1) - categories.
Remark:There is a refinement of this
notion toa (P1G) category:
All K-morphisms with kyp arethe idenlity
All K-morphisms withkeg are invertible

In this notation a (0,0) category is aset. A (1,1) category is a category inthe
normal sense.

One
commonly encounters the team

I

(0,n)-category"so itis and-categry
Where allknorphismsin one invertible.

Fo(X) is an (D,0) -cntegory.
For careful definitions see works of Barwick,

Bergner, Schommer-Pries, Rezk, and references
in the surveys byFreed, Safronov, and
Teleman.



Ele Agood example ofa
2-category is the category ALGLVECT):
Ormorphisms are algebras A
1-morphisms are A.-As bimodules

2-morphisms are bimodule maps.

met:A second useful example
is CATofa 2-category eKlinear

O-morphisms are. (small) categories
1-morphisms are functors

2-morphisms are 4 tons between fructors

Example3:By extending the
discussion of the saddle above

we can define an n-category
Bardn b

to be badtakingthemapsthe



This can even be generalized
to an (0,n) category by
taking(n+1) - morphisms tobe dif hisms ofbordisms-

eomap
preserving allthe initial

and

final K-bordisms.
The (+2) -morphisms are

isotopies of differs etc.

Finally the bordisms can
be endowed withbackground
fields to define Bard(I).



Structure.

Finally, the notion ofmonoidal (tensor)
category can be

extended to n-categories
Thisrequires

hand work.

For the 2-category ALG(CT)
The monoidal structure is the usual

Aproductofalgebras, bimodules, and
linear
maps
For Burdnt) The monoidal
structure is disjoint union.



7. ended
(symmetric)uLet I be a monoidal n-category

Then an extended TFT isa

monoidal functor of n-categories

F:Bordn() ->2
Monoidal n-categories have a distinguished
O-maphism It, the unitunder &
and

one defines the looped category
RE: =Hom(1e, Ie)

which is a monoidal (n-1) - category.
In our discussion here we will
assume that

=VECT => MC =K.



withthisnotationifMr.acompetite
F(M1) =0bj (&"2)
An important pointis thatthere

can be differentn-categories 2 with

*2= VECT. So the choice of

codomainis an importantpartof

specifying an extended TFT.

Example:For finitegauge theory
in n =2 dimensions

2 =ALG(VEC) F(p+)=C16]

2=CAT F(pt) =VECT(+,(B6))
=Rep(G) =

category ofreps of G.



Bark:The "cobordism hypothesis"is
an ideagoing back

to Baez,Dolan.

It states, very roughly,
that
a

fully extended TFTis "completely
determined by its value on a point

"

Recall RatF(pt) GObjLe)
is
an object in an n-category.

Agood example isthe case

n =1 where F(pt)=
/

a vector space of nondegenerate
bilinear form defines the theory.



Aprecise version was proved by
1

Jacob Lunie. Wejustgivea

very rough ideas

1.) To every (0,0) categoryC
we can

assign
a topological space

spIC) so thatthereisan equivalence
ofC with0)sp(C).

2)Given a fixed (D,n) category,
2, the codomain, one can
define an (0,0) category of
topological field theories
Hom (Borda, 2) and therefore
There is a corresponding



"Space of theories" X
X =Sp(Hom/Barda,2))
Note:This realizes, in thissettingsahold dream of physicists of
defining a "space of GFT's."
Given an (a, n) category eThere is:

1

1.) Asubcategory,etc of

finite dimensional K-morphisms:
These satisfy the analog ofthe

S-diagram argumentfromlecture?
2.) An (1,8) category (eth)

-



obtained by deletingall
mominvertible K-maphism so

Finally, we mustendow/

Burda withthe field"of
a framing. Thismeans
K-brrdismshave a trivialization

TWO(x-)=Wx"
The cobordism hypothesis states
There is a homotopy equivalence
oftopological spaces

e

sp(Hom (Bordn/frl),e)-sp (28d)
given by E F4t



8.InmotopyTheories

fa:it- finite
spaces.

When we discussed finite group
gauge theory we introduced the

space BC. It has the

property
that

kg(BC) =)5739
There is a generalization available
When G =Ais an Abelian

group.



r-or every
Abelian group A

and

integer n) I we can define
/ "

an Eilenberg-Machane space
KCA, n) (up tob.e.) by

ig(k(A,n)) =(953oE
e.g. k(2,1) =5 but

This is atypical:
k(2,2) I S2
after all 53194) = 2!

jsy)5 =kazi die,as



So to construct K(2,2) we
would need to attach higherand
higher disks tokill the higher
homotopy groups.↑

Abetter
way

to think aboutit:
Consider the set ofpure states

in

am n-dinalHilbertspace
RD" =San*/U(K)
LES of homotopy groups ->
T2(RP") = I

ij(44) =0 j =3, - -,2n+ 1
2

So, take the n->s limit"



We can identify K(2,2) with
The

space of pure states
in Odial

Hilbertspace.
K(A, n) will typically have some
kind of infinite-dimensionalmodel.

We can now startthinking about
KCA, n) bundles over topological
spaces X. These are
classified by homotopy classes
X -k(A,n+1)



Def: Ai-finite space It
is a topological space witha
finite set of connected components,
each of which has a finite set
of nunzero homotopy groups ij(f(a)each of which is a finite

group.

When It is connected ithas a
"Postnikov decomposition"as an
iterated fibration of Eil.-Mach

spaces:(See BoH+Tv pp. 250-251)k(s,3) -> Lt
↓ "

k(T2,q2)-xtR -Bk+3,93)=k43,994)
↓

=Kagt)
It" =k(x,gi)-Bkiz,92)



A2-stagePost, decomp
of

the form

KCA, 2)- It

↓
x(G1) -> K(A, 5)

is called a "2-group"and
plays an importantrole in
Dumitresau'slectures.
In general, A-finite spaces are
also referred toas "highergroups."



*

b: The TET'sothe
Given a i-finite

space (t

and a symmetric
monoidal

m-category 2 one can construct

an m-dialextended IT

denoted alm
x,3

For the case 2 is a "Monita

m-category"(constructed fromalgebra objects)
a fairly complete description
is in Freed-Hopkins-Line -Teleman



Assuming **C=VCT
a concrete descriptionof the
"top two levels"is the fallowing
Notation:For

any manifold M

let (fM: = Cout Map (M-st)
Then we define the state-spaces:

(Na_):=Fun (r. (May)
To see thisisreasonable
consider the quantitationof
the m-dimensimal scalar
fieldwithaction (2002

Mm



The theory depends on a
metric and the Hilbert

space of
the theory ona

compactmanifoldwithoutbury
No- should be something like
↳ (ENm). States would

be derived from worefunctionals

E(x)] be)CNm-1
Here in the TFTsetting me
are only working up to

homotopy



Examples:

1.) ( =k(A,g)

Ho(XNm) =H8)Nm-, A)
So the "space of States of"It
on the spatial manifold Nm-1
is the vector space of functions
from the finite Abeliangrop H8(N-,A)
tothecomplexnumbers.

2.) =k(G1) =BG
isom, classes

to (EN--1) =[of principal
L G-bundles overspatial Nm-1



Now to define amplitudes associated
to a bordism:

Nim!)-Nat
O

we form a "correspondence"
StMm

p.X Pi
X

DNm, -Nm-

Po,Ps are given by restricting
thefield (e)Mm tothe in-
and out-bound ones



the idea is thatthe linear

map
I (Mm):F(N)-FIN!!)

is given by pullback -push forward

F(Mm) =(P1,x). p*
While Potis straightforward
P,xis not. Ituses the

"homotopy cardinality"

4, x(4)(2) =2(Flinns, $T""yus
(4] en(pichs)



Using properties ofhomotopy
fiberproducts one can check
the crocial gloingproperties.

Remark. Taking No=N'=6-

gives the partition function on
a compact

on-manifold wort bury
as a corollary:

-() =2(ed)Y"
(4][π)jMr)



Remark:Correspondences and homotopy
fiber productsplay acrucialrole
in this subject.
In generals a correspondence between

two sets R, andisa

space S and a pain of maps

1. S fa
XX
R, Re

It generalizes the motion of a
function from R, -> R2. In
The case ofa function iswould
be the graph and fifa would be

projection todomain and codomain.



To check things like givingwe
would liketo be able to

compose correspondences:
Wantto go from

Siz
fl
↓ GetaySas
Ri Rz R3

to

Sys

9 ↳Se
Siz

fl
↓ GetaySas
Ri R2 R3



In the world of topological
spaces and continuous maps
a natural

way
to do this is

via the fiberproduct
S, Xn Se

Pl P2L -Se
S,
R4t

5 is a
continuous5, xh Se =G(S,Se,U):pathinR: 3

U:f,(s,)mx fe(Sz)
Contrast this withthe

ordinary
fiber product

S,Xft2=[(s,52)(f51) =false))



9.DeDiwalls

T
-
Finite HomotopyTheories

↳wingreeleman,2209.0747)

In The FHT 2(m) we
I

essentially introduce a notion of
"dynamical fields"(up to homotopy)
StM =Map (M,DC)
We can do thatwithdefects

and domainwalls as well.
Then we quantize"therelevant
spaces and correspondences by

takingnationscategorythe
up tohomotopy.



In general a defect will
be associated to some subset

Z in a spacetime.
I

need notbe smooth - it
could be a stratified space

z:--
It isgood to describe the

defects firstwhenI isa
manifold and then piece them

together working up in codimension.



If Zis a smooth codim:l
submanfuld ofspacetime them

locally ithas a linking sphere
l- 1

-

-S

·zensen
The "semi-classical"(dynamical)
local degrees offreedom are
declared tobe a spaceIand a map
4: Y-Set



To describe a defectglobally
M=S (down, Idefect) /
&bulk:MmtIt defect:ZtY

that

such

datee 3-Z

Amplitudes, statespaces, etc. in the
presence of the defect are obtained

by "quantizing "



· Domain Walls

·

Boundary Theories
·Dirichlet +Neumann BoundaryTheories
& Example of a(m)BG
Reduction of structuregroup on the
boundary
· Composition of defects
· Example of composition
of domain walls between
finite gauge theories.



10. SymmetryAlfA
FinaltomoAtoy
QFT:Picture
-

· Motivation] G-symmetry-
in GM

· Motivation 2: SUCN) vs PSUCN)
-

gargetheory in 4d:Coupling
tothe 5d gerbetheory
-(5)
BA Acz)SWIN))=w

· General definition ofquicke
and quiche action


